O.P.Code: 23EC0459

R23

H.T.No.

## SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

## B.Tech. II Year II Semester Regular Examinations July/August-2025 ANALOG CIRCUITS

(Electrical & Electronics Engineering)

|               |   | (Electrical & Electronics Engineering)                                                             |                 |           |           |
|---------------|---|----------------------------------------------------------------------------------------------------|-----------------|-----------|-----------|
| Time: 3 Hours |   | Max.                                                                                               | Marl            | ks: 70    |           |
|               |   |                                                                                                    |                 |           |           |
| 1             | a | Discuss the need of biasing of a transistor.  Output  Discuss the need of biasing of a transistor. | CO1             | <b>L2</b> | 2M        |
| 1             | b | Define operating point.                                                                            | CO1             | L2<br>L1  | 2M        |
|               | c | List the characteristics of negative feedback amplifiers.                                          | CO <sub>2</sub> | L1        | 2M        |
|               | d | Sketch the Equivalent circuit of a transistor using h-Parameters.                                  | CO <sub>2</sub> | L1        | 2M        |
|               | e | What is the necessary condition for sustained oscillations?                                        | CO <sub>1</sub> | L1        | 2M        |
|               | f | Define op-amp.                                                                                     | CO1             | L1        | 2M        |
|               | g | What are the types of Multivibrators?                                                              | CO1             | L1        | 2M        |
|               | h | Define common mode Rejection Ratio.                                                                | CO1             | L1        | 2M        |
|               | i | Draw the pin configuration of 555 timer.                                                           | CO2             | L1        | 2M        |
|               | j | List out the examples of digital phase detectors.                                                  | CO1             | L2        | 2M        |
|               | J | PART-B                                                                                             | COI             |           | 2111      |
|               |   | (Answer all Five Units $5 \times 10 = 50$ Marks)                                                   |                 |           |           |
|               |   | UNIT-I                                                                                             |                 |           |           |
| 2             | a | List out the different types of clipping and clamping circuits.                                    | CO <sub>1</sub> | L1        | 5M        |
|               | b | Explain the concept of DC and AC Load lines and discuss the Criteria for                           | CO <sub>2</sub> | L2        | <b>5M</b> |
|               |   | fixing the Q-point.                                                                                |                 |           |           |
|               |   | OR                                                                                                 |                 |           |           |
| 3             | a | Compare the various biasing techniques of a BJT.                                                   | CO <sub>2</sub> | L2        | 5M        |
|               | b | Draw the collector to base bias circuit and derive an expression for the stability factor.         | CO3             | L3        | 5M        |
|               |   | UNIT-II                                                                                            |                 |           |           |
| 4             |   | Derive the equations for voltage gain, current gain, Input impedance, and                          | CO3             | L4        | 10M       |
|               |   | output Impedance for a BJT using Approximate model in CC                                           |                 |           |           |
|               |   | configuration.                                                                                     |                 |           |           |
|               |   | OR                                                                                                 |                 |           |           |
| 5             | a | Sketch the four types of feedback amplifier topologies.                                            | CO <sub>2</sub> | L3        | 5M        |
|               | b | Describe the effect of input resistance for Voltage shunt feedback                                 | CO <sub>3</sub> | <b>L2</b> | 5M        |
|               |   | amplifier.                                                                                         |                 |           |           |
|               |   | UNIT-III                                                                                           |                 |           |           |
| 6             | a | Determine the frequency of oscillations when an RC phase shift oscillator                          | CO6             | L3        | 5M        |
|               |   | has R=10 k $\Omega$ , C=0.01 $\mu$ F and RC = 2.2 k $\Omega$ .                                     |                 |           |           |
|               | b | Explain the working principle of Wein-bridge oscillator using BJT and                              | CO <sub>3</sub> | <b>L4</b> | 5M        |
|               |   | Derive the expression for frequency of sustained oscillations.                                     |                 |           |           |
|               |   | OR                                                                                                 |                 |           |           |
| 7             | a | In a Wien bridge oscillator, if the value of R is 100 $k\Omega$ and frequency of                   | CO <sub>6</sub> | <b>L3</b> | <b>6M</b> |
|               |   | oscillation is 10kHz, examine the value of capacitor C.                                            |                 |           |           |
|               | b | Draw the schematic symbol of an op-amp and list the different terminals                            | CO <sub>1</sub> | L1        | <b>4M</b> |
|               |   | with their features.                                                                               |                 |           |           |
|               |   |                                                                                                    |                 |           |           |

## UNIT-IV

| 8  | a | Design a differentiator circuit with sine wave input using op-amp.                                     | CO <sub>5</sub> | <b>L6</b> | <b>6M</b> |
|----|---|--------------------------------------------------------------------------------------------------------|-----------------|-----------|-----------|
|    | b | Design an op-amp differentiator that will differentiate an input signal v                              | CO <sub>6</sub> | <b>L6</b> | <b>4M</b> |
|    |   | =100 Hz.                                                                                               |                 |           |           |
|    |   | OR                                                                                                     |                 |           |           |
| 9  | a | Explain the operation of monostable multivibrator using op-amp ,with a neat circuit and its waveforms. | CO6             | L2        | 5M        |
|    | b | Draw the circuit diagram of Non-Inverting comparator & explain its operation.                          | CO4             | L2        | 5M        |
|    |   | UNIT-V                                                                                                 |                 |           |           |
| 10 | a | Explain in detail about R-2R DAC with a neat diagram.                                                  | CO <sub>4</sub> | <b>L2</b> | 5M        |
|    | b | Discuss the parameters specifications of DAC/ADC.                                                      | CO <sub>4</sub> | <b>L2</b> | 5M        |
|    |   | OR                                                                                                     |                 |           |           |
| 11 | a | Draw a neat circuit of astable multivibrator using 555 IC and explain operation with waveforms.        | CO5             | L2        | 5M        |
|    | b | Explain about PLL principle in detail and block diagram.                                               | CO5             | L2        | 5M        |

